
Db2 Query Optimization 101

John Hornibrook

IBM Canada

Db2 LUW

Agenda

• What is query optimization and why is it important for performance?

• The different phases of query optimization

• How catalog statistics are used in query optimization

• How the query optimizer costs access plans

• Understand access plans using the explain facility

2

 Why Optimize Queries (1|2)?

• Performance
• Improvement can be orders of magnitude for complex queries

• Lower total cost of ownership
• Query tuning requires deep skill

• Complex DB designs
• SQL/XQuery generated by query generators, naive users
• Fewer skilled administrators available
• Various configuration and physical implementation

3

 Why Optimize Queries (2|2)?

• There are a lot of factors to consider when optimizing query execution:
• Configuration options

• Memory, CPUs, I/O, communication channels

• Table organization schemes
• DB partitioning, table partitioning, multi-dimensional clustering

• Data formats
• Column, row, Hadoop

• Complex data types
• XML

• Federation, data virtualization
• Parts of the query execute on remote DB servers.

• Auxiliary performance and storage options
• Indexes, MQTs, compression

4

What is Query Optimization?
• SQL compilation:
• In: SQL statement, Out: access section
• Query optimization is 2 steps in the Db2 SQL statement compilation process

• Query transformation (rewrite)
• Access plan generation

SELECT ITEM_DESC, SUM(QUANTITY_SOLD),

AVG(PRICE), AVG(COST)

 FROM PERIOD, DAILY_SALES, PRODUCT, STORE

WHERE

 PERIOD.PERKEY=DAILY_SALES.PERKEY AND

 PRODUCT.PRODKEY=DAILY_SALES.PRODKEY

AND

 STORE.STOREKEY=DAILY_SALES.STOREKEY AND

 CALENDAR_DATE BETWEEN AND

 '01/01/2012' AND '04/28/2012' AND

 STORE_NUMBER='03' AND

 CATEGORY=72

GROUP BY ITEM_DESC

Thread 0

DSS

TQA (tq1)

AGG (complete)

BNO

EXT

Thread 1

TA (Product)

NLJN (Daily Sales)

NLJN (Period)

NLJN (Store)

AGG (partial)

TQB (tq1)

EXT

Thread 2

TA (DS_IX7)

EXT

Thread 3

TA (PER_IX2)

EXT

Thread 4

TA (ST_IX1)

EXT

Access plan generation Query transformation

Access

section

Dozens of query

transformations

Hundreds or thousands

of access plan options

Store

Product

Product Store

NLJOIN

Daily Sales NLJOIN

Period

NLJOIN

Product

NLJOIN

Daily Sales

NLJOIN

Period

NLJOIN

Store

HSJOIN

Daily Sales

HSJOIN

Period

HSJOIN

Product

Store ZZJOIN

Daily Sales

HSJOIN

Period

5

Phases of SQL Compilation

Parsing
 Catch syntax errors
 Generate internal representation of query

Semantic checking
 Determine if query makes sense
 Incorporate view definitions
 Add logic for constraint checking and

triggers
Query optimization
 Modify query to improve performance

(Query Rewrite)
 Choose the most efficient "access plan"

Pushdown Analysis
 Federation “optimization”

Threaded code generation
 Generate efficient "executable" code
 “Access section”

QGM

•Sometimes references to “optimization” really
mean SQL compilation
•There is a lot more involved to SQL compilation

6

Query Optimization
• SQL compilation:

• Query transformation (rewrite)
• Access plan generation

SELECT ITEM_DESC, SUM(QUANTITY_SOLD),

AVG(PRICE), AVG(COST)

 FROM PERIOD, DAILY_SALES, PRODUCT, STORE

WHERE

 PERIOD.PERKEY=DAILY_SALES.PERKEY AND

 PRODUCT.PRODKEY=DAILY_SALES.PRODKEY

AND

 STORE.STOREKEY=DAILY_SALES.STOREKEY AND

 CALENDAR_DATE BETWEEN AND

 '01/01/2012' AND '04/28/2012' AND

 STORE_NUMBER='03' AND

 CATEGORY=72

GROUP BY ITEM_DESC

Thread 0

DSS

TQA (tq1)

AGG (complete)

BNO

EXT

Thread 1

TA (Product)

NLJN (Daily Sales)

NLJN (Period)

NLJN (Store)

AGG (partial)

TQB (tq1)

EXT

Thread 2

TA (DS_IX7)

EXT

Thread 3

TA (PER_IX2)

EXT

Thread 4

TA (ST_IX1)

EXT

Access plan generation Query transformation

Access

section

Dozens of query

transformations

Hundreds or thousands

of access plan options

Store

Product

Product Store

NLJOIN

Daily Sales NLJOIN

Period

NLJOIN

Product

NLJOIN

Daily Sales

NLJOIN

Period

NLJOIN

Store

HSJOIN

Daily Sales

HSJOIN

Period

HSJOIN

Product

Store ZZJOIN

Daily Sales

HSJOIN

Period

7

Query Rewrite - An Overview

• What is Query Rewrite?
• Rewriting a given SQL query into a semantically equivalent form that may be

processed more efficiently

• Example:
• Original query:
 SELECT DISTINCT CUSTKEY, NAME FROM CUSTOMER

• After Query Rewrite:
 SELECT CUSTKEY, NAME FROM CUSTOMER

• Rationale:
• CUSTKEY is unique, distinct is redundant

8

Query Rewrite - Why?

• Hidden culprit:
• Multiple specifications allowed in SQL
• SQL allows multiple specifications ;-)
• There are many ways to express the same query

• Visible reasons:
• Query generators

• Often produce suboptimal queries that don't perform well
• Don't permit "hand optimization"

• Complex queries
• Often result in redundancy, especially with views

• Large data volumes
• Optimal access plans more crucial
• Penalty for poor planning is greater

9

Let’s follow an example

SELECT

 SUM(CS_EXT_SHIP_COST) AS "TOTAL SHIPPING COST",

 AVG(CS_EXT_SHIP_COST) AS “AVERAGE SHIPPING COST"

FROM

 CATALOG_SALES CS1,

 DATE_DIM,

 CUSTOMER_ADDRESS

WHERE

 D_DATE BETWEEN ‘2018-4-01' AND (CAST(‘2018-4-01' AS DATE) + 60 DAYS) AND

 CS1.CS_SHIP_DATE_SK = D_DATE_SK AND

 CS1.CS_SHIP_ADDR_SK = CA_ADDRESS_SK AND

 CA_STATE = 'NY' AND

 NOT EXISTS

 (SELECT * FROM CATALOG_RETURNS CR1 WHERE CS1.CS_ORDER_NUMBER = CR1.CR_ORDER_NUMBER)

10

3 tables

(2 joins)

Search conditions

(predicates)

“Get the total and average
shipping cost for NY catalog sales
that had no returns for the 60 days
starting Apr. 1 2018”

Step 1: Parsing and Query Graph Construction

• An SQL statement is
parsed into a Query
Graph

• Yellow boxes are
relational operations

• Red boxes are tables or
table functions

11

CATALOG

RETURNS

CATALOG

SALES

CUSTOMER

ADDRESS

DATE_DIM

SELECT 2

SELECT 3

GROUP BY

SELECT 1

SELECT * FROM

CATALOG_RETURNS CR1

WHERE

CS1.CS_ORDER_NUMBER =

CR1.CR_ORDER_NUMBER

D_DATE BETWEEN ‘2018-4-01' AND

(CAST(‘2018-4-01' AS DATE) + 60 DAYS) AND

CS1.CS_SHIP_DATE_SK = D_DATE_SK AND

CS1.CS_SHIP_ADDR_SK = CA_ADDRESS_SK AND

CA_STATE = 'NY' AND NOT EXISTS (SELECT 3)

SUM(CS_EXT_SHIP_COST),

AVG(CS_EXT_SHIP_COST

Correlation!

Step 2: Query Rewrite
• Correlated NOT EXISTS subquery is

converted to an anti-join

• Constant expressions are pre-
computed

• Aggregation operations are unified

12

CATALOG

RETURNS

CATALOG

SALES

CUSTOMER

ADDRESS

DATE_DIM

SELECT 2

ANTIJOIN

GROUP BY

SELECT 1

SELECT Q5.CS_EXT_SHIP_COST

CATALOG_RETURNS Q1

ANTIJOIN (SELECT 2) Q5

ON Q5.CS_ORDER_NUMBER =

Q1.CR_ORDER_NUMBER)

D_DATE >= ’04/01/2018' AND

D_DATE <= ’05/31/2018’ AND

CS_SHIP_DATE_SK = D_DATE_SK AND

CS_SHIP_ADDR_SK = CA_ADDRESS_SK

AND CA_STATE = 'NY'

SUM(CS_EXT_SHIP_COST) AS $C0,

COUNT_BIG(CS_EXT_SHIP_COST) AS $C1

$C0 AS "TOTAL SHIPPING COST",

($C0/$C1) AS "AVG SHIPPING COST"

Db2 Query Rewrite Technology (1|2)

• Heuristic-based decisions
• Push predicates close to data access
• Decorrelate whenever possible
• Transform subqueries to joins
• Merge view definitions

• Extensible architecture
• Set of rewrite rules and rule engine
• Each rewrite rule is self-contained
• Can add new rules and disable existing ones easily

13

Db2 Query Rewrite Technology (2|2)

• Rule engine with local cost-based decisions

• Rule engine iteratively transforms query until the query graph
reaches a steady-state

• ~140 rules

• This presentation shows only a few examples

14

Query Rewrite - Operation Merge

• Goal: give the optimizer maximum latitude in its decisions
• Techniques:
• View merge

• makes additional join orders possible
• can eliminate redundant joins

• Subquery-to-join transformation
• removes restrictions on join method/order
• improves efficiency

• Redundant join elimination
• satisfies multiple references to the same table with a single scan

• Shared aggregation
• reduces the number of aggregation operations

15

Query Rewrite - Predicate Translation

• GOAL: optimal predicates
• Distribute NOT (De Morgan's law)

... WHERE NOT(COL1 = 10 OR COL2 > 3)
• becomes
... WHERE COL1 <> 10 AND COL2 <= 3

• Predicate transitive closure
• given predicates:
T1.C1 = T2.C2, T2.C2 = T3.C3, T1.C1 > 5

• add these predicates...
T1.C1 = T3.C3 AND T2.C2 > 5 AND T3.C3 > 5

• IN-to-OR conversion for Index ORing
• and many more...

 16

Query Optimization
• SQL compilation:

• Query transformation (rewrite)
• Access plan generation

SELECT ITEM_DESC, SUM(QUANTITY_SOLD),

AVG(PRICE), AVG(COST)

 FROM PERIOD, DAILY_SALES, PRODUCT, STORE

WHERE

 PERIOD.PERKEY=DAILY_SALES.PERKEY AND

 PRODUCT.PRODKEY=DAILY_SALES.PRODKEY

AND

 STORE.STOREKEY=DAILY_SALES.STOREKEY AND

 CALENDAR_DATE BETWEEN AND

 '01/01/2012' AND '04/28/2012' AND

 STORE_NUMBER='03' AND

 CATEGORY=72

GROUP BY ITEM_DESC

Thread 0

DSS

TQA (tq1)

AGG (complete)

BNO

EXT

Thread 1

TA (Product)

NLJN (Daily Sales)

NLJN (Period)

NLJN (Store)

AGG (partial)

TQB (tq1)

EXT

Thread 2

TA (DS_IX7)

EXT

Thread 3

TA (PER_IX2)

EXT

Thread 4

TA (ST_IX1)

EXT

Access plan generation Query transformation

Access

section

Dozens of query

transformations

Hundreds or thousands

of access plan options

Store

Product

Product Store

NLJOIN

Daily Sales NLJOIN

Period

NLJOIN

Product

NLJOIN

Daily Sales

NLJOIN

Period

NLJOIN

Store

HSJOIN

Daily Sales

HSJOIN

Period

HSJOIN

Product

Store ZZJOIN

Daily Sales

HSJOIN

Period

17

Access Plan Generation

• An Access Plan represents a sequence of runtime operators used to
execute the SQL statement

• Represented as a graph where each node is an operator and the
edges represent the flow of data

• The order of execution is generally left to right
• But there are some exceptions
• (Hash join build table is on the RHS and is created first)

• Use the explain facility to see the access plan
• (More on this later)

18

HSJOIN

CATALOG_

SALES

DATE_DIM

TBSCAN TBSCAN

1) Create

hash table

2) Probe

hash table

Access Plan Generation

• Access plan generation occurs by scanning the Query Graph

• The access plan is built from the bottom up
1. Build sub-plans for accessing tables first

• Table scans, index scans
2. Build plans for relational operations that consume those tables

• Joins, GROUP BY, UNION, ORDER BY, DISTINCT

• Multiple preparatory Query Graph scans collect information to drive
access plan generation
• Interesting orders, DB partitioning and keys
• Dependencies dictated by the Query Graph

• i.e. correlation – must read table 1 before table 2

19

Access Plan Generation – Base Access and Joins

CATALOG

SALES

Q2

SELECT

DATE_DIM

Q1

CUSTOMER

ADDRESS

Q3

D_DATE >= ’04/01/2018' AND

D_DATE <= ’05/31/2018’ AND

CS_SHIP_DATE_SK = D_DATE_SK AND

CS_SHIP_ADDR_SK = CA_ADDRESS_SK

AND CA_STATE = 'NY'

TBSCAN

IXSCAN 1

IXSCAN 2

TBSCAN

IXSCAN 3

FETCH

TBSCAN

TBSCAN

Q1

TBSCAN

Q2

HSJOIN

TBSCAN

Q2

TBSCAN

Q1

HSJOIN

TBSCAN

Q1

TBSCAN

Q2

NLJOIN

TBSCAN

Q1

IXSCAN

Q2

NLJOIN

2) Build base

accesses

3) Enumerate

joins

TBSCAN

Q1

TBSCAN

Q2

HSJOIN TBSCAN

Q3

HSJOIN

2-way joins

3-way joins

1) Scan Query Graph

20

Access Plan Operators

• Access plan operators have arguments and properties

• Arguments tell Db2 runtime how they execute
• e.g. sort key columns, partitioning columns, # of pages to prefetch, etc.

• Properties describe characteristics of the data stream
• Columns projected
• Order
• Partitioning (DB partitioned environment)
• Keys (uniqueness)
• Predicates (filtering)
• Maximum cardinality

21

Access Plan Operator Properties

• Properties can be exploited to improve performance

• Order, uniqueness and partitioning can be “valuable”
• Because it takes work to create them
• Order needs SORT ($$$)
• Partitioning needs a table queue (TQ) ($$$)
• Uniqueness needs a DISTINCT (or duplicate removing SORT) ($$$)

• More expensive sub-plans are retained if they possess an ‘interesting’
property

• Interestingness depends on the semantics of the query
• Represented in the query graph

22

Access Plan Generation Considerations

• Where the access plan should execute:
• Database partitioned systems

• co-located, repartitioned or broadcast joins
• Multi-core parallelism

• degree of parallelism, parallelization strategies
• Federated systems

• push operations to remote servers
• compensate in Db2

• Column or row processing

23

Join Enumeration

• The search algorithm used to plan joins

• Search complexity depends on how tables are connected by
predicates

• 2 methods:
• Greedy

• Most efficient, but not exhaustive
• Could miss some good plans

• Dynamic
• Exhaustive, but expensive for large or highly connected join graphs

24

Dynamic Join Enumeration

25

STORE_SALES

CUSTOMER

STORE

DATE_DIM

{ CUSTOMER (Q1) }, { STORE_SALES (Q4) }
{ STORE (Q2) }, { STORE_SALES (Q4) }
{ DATE_DIM (Q3) }, { STORE_SALES (Q4) }

{ CUSTOMER (Q1) }, { DATE_DIM (Q3), STORE_SALES (Q4) } P4
{ CUSTOMER (Q1) }, { STORE (Q2), STORE_SALES (Q4) } P5
{ STORE (Q2) }, { DATE_DIM (Q3), STORE_SALES (Q4) } P6
{ STORE (Q2) }, { CUSTOMER (Q1), STORE_SALES (Q4) } P5
{ DATE_DIM (Q3) }, { STORE (Q2), STORE_SALES (Q4) } P6
{ DATE_DIM (Q3) }, { CUSTOMER (Q1), STORE_SALES (Q4) } P4

{ CUSTOMER (Q1) }, { STORE (Q2), DATE_DIM (Q3), STORE_SALES (Q4) }
{ STORE (Q2) }, { CUSTOMER (Q1), DATE_DIM (Q3), STORE_SALES (Q4) }
{ DATE_DIM (Q3) }, { CUSTOMER (Q1), STORE (Q2), STORE_SALES (Q4) }

Greedy Join Enumeration

26

STORE_SALES

CUSTOMER

STORE

DATE_DIM

Only the cheapest join partition from each stage moves to
the next stage

{ STORE_SALES (Q4) }, { CUSTOMER (Q1) }
{ STORE_SALES (Q4) }, { STORE (Q2) }
{ STORE_SALES (Q4) }, { DATE_DIM (Q3) }

{ CUSTOMER (Q1) }, { STORE (Q2), STORE_SALES (Q4) }
{ DATE_DIM (Q3) }, { STORE (Q2), STORE_SALES (Q4) }

{ CUSTOMER (Q1) }, { STORE (Q2), DATE_DIM (Q3), STORE_SALES (Q4) }

Optimization Classes and Join Enumeration
• Use optimization classes to control join enumeration method
• Recommendation – use the default (5)
• Greedy join enumeration

• 0 - minimal optimization for OLTP
• 1 - low optimization, no HSJOIN, IXSCAN, limited query rewrites
• 2 - full optimization, limit space/time

• use same query transforms & join strategies as class 5

• Dynamic join enumeration

• 3 - moderate optimization, more limited plan space
• 5 - self-adjusting full optimization (default)

• uses all techniques with heuristics
• 7 - full optimization

• similar to 5, without heuristics
• 9 - maximal optimization

• spare no effort/expense
• considers all possible join orders, including Cartesian products!

27

Optimizer Cost Model

• Detailed model for each access plan operator

• Estimates the # of rows processed by each operator (cardinality)
• Estimates predicate filtering (filter factor or selectivity)
• Most important factor in determining an operator’s cost

• Combine estimated runtime components to compute “cost”:
• CPU (# of instructions) +
• I/O (random and sequential) +
• Communications (# of IP frames, in parallel or Federated environments)

28

Simplified Costing Example (1|2)

• The cost model uses information from:
• DBM config
• System catalogs (SYSCAT.STOGROUPS, SYSCAT.TABLESPACES)
• Catalog statistics (SYSSTAT.*)

29

Customer

TBSCAN
WHERE STATE = ‘NC’

CARDINALITY: 1000000

FPAGES: 50000

SELECTIVITY: 0.65

(frequent value statistics)

I/O cost =

(50000 * PAGESIZE / DEVICEREADRATE (MB/s))

 + (50000 / EXTENTSIZE * OVERHEAD (ms))

CPU cost = CPUSPEED * (

(#TBSCAN instructions * 50000) + (#predicate

instructions* 1000000) + (#data copy * 0.65 * 1000000))

Total Cost = I/O cost + CPU cost

Statistics Cost Model

Simplified Costing Example (2|2)

• Each runtime cost component is modelled using milliseconds

• Runtime cost components are summed

• This does NOT represent elapsed time
• Cost components typically execute concurrently
• CPU and I/O parallelism

• Therefore total cost is in units of ‘timeron’
• Just a made up name so it isn’t mistaken for elapsed time

30

Optimizer Cost Model - Timerons

• Why is ‘timeron’ a better cost metric than elapsed time?
• Timeron represents total system resource consumption
• Preferred system metric assuming concurrent query / multi-user environment
• Usually correlates to elapsed time too

• Some exceptions:
• Approximate elapsed time is used for DB partitioned (MPP) systems

• Total cost is average resource consumption per DB partition
• Encourages access plans that execute on multiple DB partitions

• Cost to get the first N rows
• Used for OPTIMIZE FOR N ROWS/FETCH FIRST N ROWS ONLY or when ‘piped’

plans are desired

 31

Costing for Database Partitioned Systems

• Cost is per DB partition

• Cost diminishes with more nodes -> encourages query parallelism

• Assumes a particular operator must process the same number of
rows, globally

32

TBSCAN

250 rows

TBSCAN

250 rows

TBSCAN

250 rows

TBSCAN

250 rows

TBSCAN

1000 rows

Execute on 4 nodes
Cost = C * 250

Execute on 1 node
Cost = C * 1000

Optimizer Environment Awareness

• Speed of CPU
• Determined automatically at instance creation time
• Runs a timing program
• Can be set manually (CPUSPEED DBM configuration parameter)

• Storage device characteristics
• Used to model random and sequential I/O costs
• I/O speed is based on :

• I/O subsystem latency
• Time to transfer data

• Parameters are represented at the storage group and table space level
• They are not set automatically by the DB2 server

 33

Storage I/O Characteristics

• Storage groups
• Latency: OVERHEAD (ms)
• Data transfer speed: DEVICE READ RATE (MB/s)

• Table spaces:
• Latency: OVERHEAD (ms)
• Data transfer speed: TRANSFERRATE (ms/page)

• Depends on the page size

• Default values for automatic storage table spaces are inherited from
their underlying storage group
• This is the recommended approach
• Otherwise, be careful to adjust for different page sizes!

 34

Optimizer Environment Awareness

• Buffer pool size

• Sort heap size
• Used by sorts, hash join, index ANDing, hash aggregation and distincting
• Main memory pool used by column-organized processing

• Communications bandwidth
• To factor communication cost into overall cost, in DB partitioned environments

• Remote data source characteristics in a Federated environment

• Concurrency isolation level / locking

• Number of available locks

35

Planning and Modelling Predicate Application

• In general, optimizer tries to apply predicates as early as possible
• Filter rows from stream to avoid unnecessary work

• However, some types of predicates can only be applied in certain
locations during query execution

• There is a hierarchy of predicate application

• The explain facility shows where predicates are applied

36

Hierarchy of Predicate Application

Salary > ALL

 (SELECT...

 FROM...

 WHERE...)

Name LIKE 'Lo%'

Residual

Predicates

Search

Arguments

(SARGs)

Runtime

engine

Data

Manager

Start/stop keys: SSN = '012-34-5678'

Index: (SSN,ID,TXID) Index

Manager

Buffer pages

Index sargable

predicates

i-sarg: TXID = 9965
(applied to all qualifying keys)

Start/stop keys

37

Cardinality Estimation

• Cardinality = number of rows
• The optimizer estimates the number of rows processed by each

access plan operator
• Based on the number of rows in the table and the filter factors of

applied predicates.
• This is the biggest impact on estimated cost!
• Catalog statistics are used to estimate filter factors and cardinality

38

Catalog Statistics

• Statistics are essential for query optimization
• Used to compute access plan cost and cardinality

• Physical characteristic statistics
• E.g. Number of pages in table, number of levels in an index

• Data attribute statistics
• E.g. Number of rows in table, number of distinct values in a column, frequent values,

quantiles

• Statistics collection methods:
• RUNSTATS command
• Automatically by Db2

• Enabled using AUTO_RUNSTATS, AUTO_STMT_STATS DB config parameters

• Statistics are stored in the system catalogs
• Visible in SYSSTAT and SYSCAT views:

• TABLES, COLUMNS, INDEXES, COLDIST, COLGROUPS

Catalog Statistics Used by the Optimizer (1|3)
SYSSTAT.TABLES

Name Description

CARD Total number of rows in the table

NPAGES Total number of pages on which the rows of the table exist

FPAGES Total number of pages

MPAGES Total number of pages for table metadata. (Columnar only)

OVERFLOW Total number of overflow records in the table

ACTIVE_BLOCKS Total number of active blocks in the table (MDC or ITC tables)

AVGROWSIZE Average length (in bytes) of both compressed and uncompressed rows

AVGCOMPRESSEDROWSIZE Average length (in bytes) of compressed rows in this table

AVGROWCOMPRESSIONRATIO Average compression ratio for compressed rows in the table

PCTROWSCOMPRESSED Compressed rows as a percentage of total number of rows in the table

Catalog Statistics Used by the Optimizer (2|3)

Name Description

COLCARD Number of distinct values in the column

HIGH2KEY Second-highest data value

LOW2KEY Second-lowest data value

AVGCOLLEN Avg. length in bytes when stored in DB memory or a temporary table

NUMNULLS Number of null values in the column

SUB_COUNT Avg. number of sub-elements in the column (LIKE predicate statistic)

SUB_DELIM_LENGTH Avg. length of delimiters that separate each sub-element (LIKE predicate statistic)

AVGCOLLENCHAR Avg. number of characters based on column collation

PCTENCODED %age encoded values (column-organized table only)

AVGENCODEDCOLLEN Avg. length when stored in DB memory (column-organized table only)

SYSSTAT.COLUMNS

Catalog Statistics Used by the Optimizer (3|3)

Name Description

NLEAF Number of leaf pages

NLEVELS Number of index levels

FIRSTKEYCARD Number of distinct first-key values

FIRSTnKEYCARD Number of distinct keys using the first 2-4 columns of the index

FULLKEYCARD Number of distinct values for the full index key

CLUSTERRATIO Degree of data clustering with the index (non-detailed index statistics)

CLUSTERFACTOR Finer measurement of the degree of clustering (detailed index statistics)

SEQUENTIAL_PAGES Number of on-disk leaf pages in index key order with no gaps

DENSITY Ratio of SEQUENTIAL_PAGES to number of prefetched pages (%age)

PAGE_FETCH_PAIRS Data page fetches required for a range of buffer pool sizes

SYSSTAT.INDEXES (not all statistics listed)

Cardinality Estimation – Local and join predicates

JOIN

SELECT * FROM T1, T2 WHERE T1.x = 7 AND T1.y = T2.y

X Y

1 A

2 B

2 C

4 D

7 E

7 F

7 G

7 H

9 I

9 J

Y

B

B

D

D

F

F

H

H

J

J

T1 T2

TYPE SEQNO COLVALUE VALCOUNT
F 1 7 4
F 2 9 2
F 3 2 2

SYSSTAT.COLDIST (X)

Selectivity (T1.x = 7): = 4/10
Using frequent value statistics

Selectivity (T1.y = T2.y):
= 1 / max(colcard(T1.y), colcard(T2.y))
= 1 / max(10,5)
= 1/10

Join predicate selectivity assumes:
Inclusion:

All values in T2.y are included in domain of T1.y
Uniformity:

Values are uniformly distributed in both columns

Result cardinality:
= Card(T1) * Card(T2) * sel(T1.x=7) * sel(T1.y=T2.y)
= 10 * 10 * 0.4 * 0.1
= 4
Actual: 4 43

The Explain Facility

• Internal phase of the optimizer that captures critical information used

in selecting the query access plan

• Access plan information is written to a set of tables

• External tools to format explain table contents:
• Db2 Data Management Console Visual Explain

• GUI to render and navigate query access plans
• Supersedes Data Server Manager Visual Explain

• db2exfmt
• Text-based output from the explain tables
• Command-line interface

44

They show the same
information

Db2 Data Management Console Visual Explain

45

db2exfmt Rows

 RETURN

 (1)

 Cost

 I/O

 |

 3.87404

 NLJOIN

 (13)

 125.206

 5

 /-------+------\

 0.968511 4

 IXSCAN FETCH

 (14) (15)

 75.0966 100.118

 3 4

 | /----+---\

 4.99966e+06 4 1.99987e+07

 INDEX: TPCD IXSCAN TABLE: TPCD

 UXP_NMPK (16) PARTSUPP

 75.1018

 3

 |

 1.99987e+07

 INDEX: TPCD.UXPS_PK2KSC

46

Cardinality (rows)

Operator name

(Operator ID)

Cost (timerons)

I/O (pages)

Base table cardinality

Explain Facility – Query Graph

• The Query Graph produced by query rewrite can be seen in the
explain output as the optimized SQL

47

SELECT

 Q8.$C0 AS "total shipping cost", (Q8.$C0 / Q8.$C1) AS "total shipping cost"

FROM

 (SELECT SUM(Q7.CS_EXT_SHIP_COST), COUNT_BIG(Q7.CS_EXT_SHIP_COST)

 FROM

 (SELECT Q6.CS_EXT_SHIP_COST

 FROM

 (SELECT Q5.CS_EXT_SHIP_COST

 FROM TPCDS.CATALOG_RETURNS AS Q1

 RIGHT OUTER JOIN

 (SELECT Q4.CS_EXT_SHIP_COST, Q4.CS_ORDER_NUMBER

 FROM TPCDS.DATE_DIM AS Q2, TPCDS.CUSTOMER_ADDRESS AS Q3, TPCDS.CATALOG_SALES AS Q4

 WHERE

 ('04/01/2001’ <= Q2.D_DATE) AND (Q2.D_DATE <= '05/31/2001') AND

 (Q4.CS_SHIP_DATE_SK = Q2.D_DATE_SK) AND (Q4.CS_SHIP_ADDR_SK = Q3.CA_ADDRESS_SK) AND

 (Q3.CA_STATE = 'NY')

) AS Q5

 ON (Q5.CS_ORDER_NUMBER = Q1.CR_ORDER_NUMBER)

) AS Q6

) AS Q7

) AS Q8

E
X P

L A I
N I T T

O M E N O W

Please fill out your session
evaluation before leaving!
Please fill out your session
evaluation before leaving!

John Hornibrook
IBM Canada
jhornibr@ca.ibm.com

48

Please fill out your session

evaluation before leaving!

